| 17 LSD QUANTITATION AND CONFIRMATION BY GCMS | Page 1 of 5                   |  |
|----------------------------------------------|-------------------------------|--|
| Division of Forensic Science                 | Amendment Designator:         |  |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL       | Effective Date: 31-March-2004 |  |

### 17 LSD QUANTITATION AND CONFIRMATION BY GCMS

#### 17.1 Summary

17.1.1 LSD and LSD-d<sub>3</sub> (internal standard) are extracted from biological samples using solid phase extraction (SPE) and injected into a GCMS for confirmation and quantitation by selected ion monitoring.

# 17.2 Specimen Requirements

17.2.1 2 mL of whole blood, biological fluid or tissue homogenate

#### 17.3 Reagents and Standards

- 17.3.1 LSD, 1 mg/mL
- 17.3.2 Methadone, 1 mg/mL
- 17.3.3 Mepivicaine, 1 mg/mL
- 17.3.4 LSD-d<sub>3</sub> 0.1 mg/mL
- 17.3.5 Methanol
- 17.3.6 Dichloromethane
- 17.3.7 Isopropanol
- 17.3.8 Toluene
- 17.3.9 Hexane
- 17.3.10 Isoamyl alcohol
- 17.3.11 Potassium phosphate buffer solution concentrate (1 M, pH 6.0, e.g. Fisher)
- 17.3.12 Ammonium hydroxide, concentrated
- 17.3.13 Acetic Acid

#### 17.4 Solutions, Internal Standard, Calibrators and Controls

- 17.4.1 Toluene:Hexane:Isoamyl Alcohol (THIA) ( 78:20:2, v:v:v) Mix 78 mL toluene, 20 mL hexane and 2 mL isoamyl alcohol
- 17.4.2 Phosphate buffer 0.1 M, pH 6.0: Dilute one volume potassium phosphate buffer solution concentrate with nine volumes of dH<sub>2</sub>O.
- 17.4.3 1 M Acetic acid: Add 100-200 mL dH<sub>2</sub>O to a 1 L volumetric flask. Add 57.5mL glacial acetic acid and QS to volume with dH<sub>2</sub>O.
- 17.4.4 Elution Solvent (prepare fresh daily): Dichloromethane/isopropanol/ammonium hydroxide (78:20:2). Mix 78 mL dichloromethane with 20 mL isopropanol. Mix well. In hood, add 2 mL ammonium hydroxide. Mix gently.

| 17 LSD QUANTITATION AND CONFIRMATION BY GCMS | Page 2 of 5                   |  |
|----------------------------------------------|-------------------------------|--|
| Division of Forensic Science                 | Amendment Designator:         |  |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL       | Effective Date: 31-March-2004 |  |

- 17.4.5 LSD calibrator stock solution 2  $\mu$ g/mL: Pipet 20  $\mu$ L LSD standard (1 mg/mL) into a 10 mL volumetric flask. QS to volume with methanol.
- 17.4.6 LSD calibrator working solution 0.2 μg/mL: Pipet 1.0 mL LSD Stock Solution (2 μg/mL) into a 10 mL volumetric flask. QS to volume with methanol.
- 17.4.7 LSD-d<sub>3</sub> 2 μg/mL internal standard solution: Pipet 200 μL LSD-d<sub>3</sub> (1mg/mL) into a 10 mL volumetric flask. QS to volume with methanol.
- 17.4.8 LSD control solution (0.2  $\mu$ g/mL):
  - 17.4.8.1 2  $\mu$ g/mL LSD QC solution: Pipet 20  $\mu$ L LSD stock (1 mg/mL, manufacturer or lot number different than that used for calibrators) into a 10 mL volumetric flask and QS to volume with methanol.
  - 17.4.8.2 0.2 μg/mL LSD QC solution: Pipet 1.0 mL 2 μg/mL LSD QC solution into 10 mL volumetric flask and QS to volume with methanol.
- 17.4.9 Mepivicaine solution 25 μg/mL: Pipet 50 μL mepivicaine standard (1 mg/mL) into a 2 mL volumetric flask. QS to volume with methanol.
- 17.4.10 Methadone solution 25 μg/mL: Pipet 50 μL methadone standard (1mg/mL) into a 10 mL volumetric flask. QS to volume with methanol.
- 17.4.11 Calibrators. To 16 x 125 mm screw cap test tubes, add 2 mL blank blood and then add the following amounts of LSD solutions
  - 17.4.11.1 0.100 mg/L = 100  $\mu$ L of 2  $\mu$ g/mL LSD stock solution
  - $17.4.11.2 \quad 0.050 \text{ mg/L} = 50 \,\mu\text{L of } 2 \,\mu\text{g/mL LSD stock solution}$
  - 17.4.11.3 0.010 mg/L = 100  $\mu$ L of 0.2  $\mu$ g/mL LSD stock solution
  - $17.4.11.4 \ 0.005 \ mg/L = 50 \ \mu L \ of 0.2 \ \mu g/mL \ LSD \ stock \ solution$
  - 17.4.11.5 0.002 mg/L =  $20 \mu L$  of 0.2  $\mu g/mL$  LSD stock solution
  - $17.4.11.6 \ 0.001 \ mg/L = 10 \ \mu L \ of 0.2 \ \mu g/mL \ LSD \ stock \ solution$
- 17.4.12 Controls
  - 17.4.12.1 Negative control blood: blood bank blood or equivalent determined not to contain LSD
  - 17.4.12.2 In house LSD control is prepared from a different lot number or different manufacturer of LSD.

# 17.5 Apparatus

- 17.5.1 Agilent GC/MSD, Chemstation software, compatable computer and printer
- 17.5.2 Test tubes, 16 x 125 mm round bottom, screw cap tubes, borosilicate glass with Teflon caps
- 17.5.3 Test tubes, 16 x 114 mm (10 mL) glass centrifuge, conical bottom
- 17.5.4 Centrifuge capable of 2,000 3,000 rpm
- 17.5.5 Cleanscreen® Extraction Cartridges (ZSDAU020) from United Chemical Technologies (200 mg columns)

# 17 LSD QUANTITATION AND CONFIRMATION BY GCMS Division of Forensic Science TOXICOLOGY TECHNICAL PROCEDURES MANUAL Effective Date: 31-March-2004

- 17.5.6 Solid phase extraction manifold
- 17.5.7 Vortex mixer
- 17.5.8 Heating block
- 17.5.9 Evaporator/concentrator
- 17.5.10 GC autosampler vials and inserts
- 17.5.11 GC/MSD Parameters. Instrument conditions may be changed or modified to improve performance and sensitivity.
  - 17.5.11.1 Acquisition Mode: SIM (quantitation ions)

17.5.11.1.1 LSD: <u>221</u>, 323, 181

17.5.11.1.2 LSD d<sub>3</sub>: 224

17.5.11.1.3 Mepivicaine: <u>98</u>

17.5.11.2 Column: HP5 MS 25 m x 0.25 mm x 0.25  $\mu$ m

17.5.11.3 Detector Temperature: 280° C

17.5.11.4 Oven Program

Equilibration time: 0.50 minutes
Initial temp: 130° C
Initial time: 1 minutes
Ramp: 17° C/min
Final Temp: 280° C
Final Time: 7 minutes
Run Time: 17 minutes

### 17.5.11.4.1 Inlet

Mode: Splitless
 Temperature: 250° C
 Injection volume: 2.0 μL

• Purge Time: ON at 2.0 minute

# 17.6 Procedure

- 17.6.1 Label clean 16 x 125 mm screw cap tubes accordingly, blank blood (no IS), negative, calibrators, control(s) and case sample IDs.
- 17.6.2 Prepare calibrators and controls.
- 17.6.3 Pipet 2 mL of case samples into appropriately labeled tubes.
- 17.6.4 Add 4 mL dH<sub>2</sub>O to each tube. Vortex briefly.
- 17.6.5 Add 50 μL LSD-d<sub>3</sub> internal standard to each tube except tube labeled blank (no IS).

| 17 LSD QUANTITATION AND CONFIRMATION BY GCMS | Page 4 of 5                   |  |
|----------------------------------------------|-------------------------------|--|
| Division of Forensic Science                 | Amendment Designator:         |  |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL       | Effective Date: 31-March-2004 |  |

- 17.6.6 Add 20 μL of 25 μg/mL mepivicaine to each tube except tube labeled blank (no IS). Mepivicaine is an alternate internal standard used when LSD-d<sub>3</sub> internal standard contains detectable levels of LSD (assessed by comparing LSD SIM ions in blank blood with and without IS).
- 17.6.7 Add 20 μL of 25 μg/mL methadone to each vial. Methadone is added as a carrier drug for the SPE extraction.
- 17.6.8 Add 3.0 mL of pH 6 phosphate buffer to each tube. Vortex for 30 seconds.
- 17.6.9 Centrifuge at approx 2000 rpm for 10 minutes.
- 17.6.10 Condition the solid phase extraction columns. Throughout the SPE procedure, it is important not to permit the SPE sorbent bed to dry, unless specified. If necessary, add additional solvent/buffer to re-wet.
  - 17.6.10.1 Add 3 mL hexane to each column and aspirate on vacuum manifold
  - 17.6.10.2 Add 3 mL methanol to each column and aspirate on vacuum manifold.
  - 17.6.10.3 Add 3 mL dH<sub>2</sub>O and aspirate.
  - 17.6.10.4 Add 1 mL of 0.1 M pH 6.0 phosphate buffer and aspirate
- 17.6.11 Without delay, pour specimens into appropriate SPE columns (leaving blood pellet formed during centrifugation in the bottom of each tube). Elute specimens from cartridges with  $\sim 1-2$  mL/ minute flow.
- 17.6.12 Wash the solid phase extraction columns:
  - 17.6.12.1 Add 3 mL dH<sub>2</sub>O and aspirate at  $\leq$  3 inches of mercury.
  - 17.6.12.2 Repeat the dH<sub>2</sub>O wash a second time.
  - 17.6.12.3 Wash with 2.0 mL 1.0 M acetic acid and aspirate.
  - 17.6.12.4 Wash with 1 mL methanol. Do not dry.
  - 17.6.12.5 Wipe the SPE column tips with Kimwipes®. Place labeled 10 mL conical test tubes in the manifold test tube rack. Be sure SPE column tips are in the designated conical tube.
- 17.6.13 Elute drugs by adding 3 mL of freshly prepared dichloromethane/isopropanol/ammonium hydroxide solution to each column. Collect eluate by gravity drain (no vacuum).
- 17.6.14 Cap conical tubes containing eluate. Refrigerate overnight. If an aqueous layer forms overnight, aspirate aqueous layer.
- 17.6.15 Evaporate eluates to dryness at approximately 40° C under nitrogen.
- 17.6.16 Reconstitute samples with  $40\mu L$  THIA.
- 17.6.17 Transfer to GC autosampler vials. Inject 2.0 μL on GC/MS in the SIM mode.

#### 17.7 Calculation

17.7.1 Calculate the concentrations by interpolation of a linear plot of the response curve based on ion abundance ratios (using the target ions listed under GCMS conditions) versus calibrator concentration.

| 17 I CD OLIANTITATION AND CONFIDMATION DV COMC |                                    |                                                                                      |                                       |  |  |
|------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|--|--|
| 17 LSD QUANTITATION AND CONFIRMATION BY GCMS   |                                    |                                                                                      | Page 5 of 5                           |  |  |
| Division of Forensic Science                   |                                    |                                                                                      | Amendment Designator:                 |  |  |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL         |                                    |                                                                                      | Effective Date: 31-March-2004         |  |  |
| 17.8                                           | 17.8 Quality Control and Reporting |                                                                                      |                                       |  |  |
|                                                | 17.8.1                             | See Toxicology Quality Guidelines                                                    |                                       |  |  |
| 150                                            | D 6                                |                                                                                      |                                       |  |  |
| 17.9                                           | Refere                             |                                                                                      |                                       |  |  |
|                                                | 17.9.1                             | United Chemical Technologies, Inc. Clean Screen® solid phase extraction whole blood. | procedure for LSD in serum, plasma or |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |
|                                                |                                    |                                                                                      |                                       |  |  |